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We describe a mathematical methodology to endow a set of chemical interest with
a topology. The procedure starts from a hierarchical classification of the set in a den-
drogram (complete binary tree). Then, we cut “branches” of the tree by means of a
mathematical procedure and we build up a basis for a topology with these branches.
Finally, we show the way to calculate some topological properties, such as; closure,
derived set, boundary, interior and exterior of subsets of chemical interest within the
particular chemical set chosen at the beginning as object of study.

KEY WORDS: topology, cluster analysis, dendrograms, trees, mathematical chem-
istry

AMS subject classification: 54A10, 05C05, 80A50

1. Introduction

There are several chemical systems which are characterized by the similarity
relationships among their elements, such as; groups of chemical elements, alk-
anes, ketones, acids, bases, among others. Thus, two elements of a set of chem-
ical interest are “very similar” if they are strongly related; trouble arises when
one asks how to quantify such a relationship. One way to put this similarity in
a numerical system is to define each element as a point in a mathematical space
and to calculate its relationship with other elements by means of a similarity
function, commonly a distance function [1–3]. In this procedure every element
is defined by means of several features of itself. The number of these features
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determines the dimension of the space in which we consider that element as a
point. A methodology that has shown important results trying to find similari-
ties among elements is cluster analysis [1,2,4] which, finally shows groups of ele-
ments that share common features. These groups or clusters can be interpreted
as groups of similar elements. A way to visualize such clusters, independent of
the dimension of the space, is a two-dimensional graphic representation called
dendrogram [5]. Cluster analysis finishes with the obtention of the dendrogram
and its respective analysis and interpretation [1,2]. However, this interpretation,
finally, depends on the point of view of the analyst, where some clusters are
relevant and others not so much. This fact introduces in this final procedure
several undesirable arbitrarities. But as we showed [5–8], it is possible to inter-
pret a dendrogram and its clusters as a map of neighbourhoods of the elements;
and extracting from these clusters such similarity neighbourhoods. It means, if
an element belongs to a particular cluster, then itself and the rest of the ele-
ments of the cluster are neighbours of it since they are similar by construc-
tion.

Since it is possible to define a neighbourhood for every element of the
set, we can approach this interpretation and apply the mathematical theory in
charge of studying neighbourhood relationships, that is Topology [5–8]. With this
tool it is possible to define topologies on the set and to study some topological
properties of itself: closure, derived set, boundary, interior and exterior. Recently
[5–8], we showed, through this procedure, that some of the semimetals belong to
the boundary of metals on the set of chemical elements. Then, taking a topo-
logical approach of a dendrogram (complete binary tree), it is possible to find
out some well-known relationships or in other cases new relationships. With the
application of this methodology we can, finally, talk about a mathematical struc-
ture of chemical systems [9] and we can do a strict (mathematical) interpreta-
tion of a dendrogram where there are no arbitrarities in the interpretation of
clusters.

2. Methodology

If we have a chemical set Q of m elements xi , where every one is defined
as a vector xi = (xi1, xi2, . . . , xin) of its n properties, then we can apply cluster
analysis to this set with the aim of knowing the similarity relationships among
xis. First, we build up a matrix of elements (m×n) and calculate by means of a
similarity function [1–3,5–8] (frequently a metric [9]) the similarity among all the
elements. Thus, we build up a new matrix (m×m) called similarity matrix [1,4,10]
and, using a grouping methodology, we obtain clusters of elements. These clus-
ters are represented in a dendrogram, which is independent of the dimension n

of the space of work because it is always two-dimensional. An example of one
of these is the one appearing in figure 1.
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Figure 1. A dendrogram.

Now that we have a dendrogram we can interpret it as a figure which
shows relationships among elements, more specifically, neighbourhood relation-
ships. For example, from figure 1 we can say that the neighbourhood of x1 is
itself and x2, or if we do not wish to be so strict, we can say that x3 belongs to
the neighbourhood, too. However, we do not say that x1 shares its neighbour-
hood with x14 or x22, for instance. It means that an element belongs to the neigh-
bourhood of another element if they both belong to the same “branch” in the
dendrogram [5,11]. The above is an intuitive point of view of the information
shown by a dendrogram, but we can put this intuition into mathematical terms
taking advantage of the topological sense of a dendrogram [5–8]. We showed a
methodology in a recent paper [6] to define these branches as subtrees and we
introduced a mathematical procedure to define these subtrees as subgraphs [5].
In the following we show a similar procedure to characterize these branches, but
now being based on the codification of every element of the dendrogram.
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2.1. Codes on the dendrogram

With the aim of providing the set Q with a topology, we associate a code
made of 0s and 1s to every element on the dendrogram. For this purpose we use
the system shown in figure 2.

Thus, the dendrogram of figure 1 can be codified and every element can be
represented by a code as we show in figure 3.

Figure 2. Codification system.

Figure 3. Codes on dendrogram of figure 1.
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It is important to remark that the identity of every element is characterized
by its code because there is only one code for each element, although the system
of codification changes. It means, if we put 0 “above” and 1 “below,” the code of
every element changes but its identity remains the same. In spite of its changes
of code, there is only one identity for every element.

Now, with these codes we can talk about neighbourhoods in terms of codes.
In other words, we can put the intuitive idea of neighbourhood as a branch of
the dendrogram in a numerical way. In the following we develop this idea defin-
ing subtree in terms of codes.

Definition 1. A subset A of Q is called subtree if there is a code α1α2 . . . αk such
that:

1. If x ∈ A, then the former components of code of x coincide with α1

α2 . . . αk.

2. If for each y ∈ Q the former components of code of y coincide with α1

α2 . . . αk, then y ∈ A.

In other words, a subtree is the set {y ∈ Q| y starts with the code α1α2 . . . αk}.

Example 1. From the dendrogram in figure 3 we can see that the subset R = {x8,

x9, x10, x11} is a subtree because all its elements start from the code 1101, besides
there is no other element in Q such that its code starts from 1101.

But, if we consider the subset NR = {x1, x2, x4, x5}, we can see that all these
elements have codes that start from 11111, but NR does not have all elements of
the tree that start from 11111, it is missing x3 whose code is 1111110. For this
reason, NR is not a subtree.

Now, in order to study neighbourhood relationships, it means, to do a
topological study of a set, we define n-subtree.

Definition 2. An n-subtree is a subtree of cardinality less than or equal to n.

It means, that an n-subtree has at most n elements. In this way, the subtree
R of example 1 is an example of 4-subtree or 5-subtree, or in general l-subtrees
where l � 4. For this reason R cannot be either a 3-subtree or a 2-subtree. Now
we introduce the definition of maximal n-subtree.

Definition 3. A maximal n-subtree is an n-subtree such that there is no other
n-subtree containing it.

Once again, taking advantage of example 1 we have that R is a maximal
4-subtree. It is important to say that R, despite being a 5-subtree, is not a max-
imal 5-subtree since it is contained in T = {x8, x9, x10, x11, x12} and T is a
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5-subtree also because it contains all the elements of Q that have the code 110.
On the other hand T is a maximal 5-subtree.

This concept is very relevant to introduce a topology in Q, because every
element belongs to one and only one maximal n-subtree. Thus, we identify the
neighbourhoods that will build up the topology on Q.

At this point we need some fundamental concepts on the set theory (A1)
and topology (A2–A4) to continue introducing our methodology that starts from
dendrograms and maximal n-subtrees, and ends by building up a topology on
the set Q of chemical interest.

Proposition 1. Bn is a partition of Q, where Bn = {B|B is a maximal n-subtree}.

Proof. According to A1, we need to prove two conditions:

1. We will prove that
⋃

B∈Bn
B = Q.

It is evident that
⋃

B∈Bn
B ⊆ Q, because every B ⊆ Q. Now we study

Q ⊆ ⋃
B∈Bn

B, in order to prove the equality. Let x ∈ Q, then {x} is an
n-subtree, to whatever n � 1. If there is a maximal n-subtree B ′ such that
{x} ⊆ B ′, then x ∈ B ′ ⊆ ⋃

B∈Bn
B; if there is no such maximal n-subtree,

then {x} is a maximal n-subtree and, it means, x ∈ {x} ⊆ ⋃
B∈Bn

B.

2. Let B,D ∈ Bn, with B �= D, we will show that B ∩ D = ∅.
Suppose there is an x ∈ B ∩ D and assume that the code of x is
α1α2 . . . αk. We need to remember that B and D are subtrees and
every one of them contains all the elements that start with the
same code b1b2 . . . bt and d1d2 . . . dl respectively (we can suppose,
without losing the generality, that t �l). Thus, code α1α2 . . . αk,
starts by b1b2 . . . bt and d1d2 . . . dl simultaneously. It is only pos-
sible if bi=di where i=1, 2, . . . , t ; this implies that D⊆B, then
D is not a maximal n-subtree, which contradicts our hypothesis.

��

Lemma 1. Every partition defined over a subset is basis for a topology.

The immediate consequence of this lemma is the generation of a basis for a
topology on Q (A3), it means that Bn produces a topology (A2) on Q by means
of arbitrary unions among its elements. In the following we define the topology
on Q obtained using this basis.

Definition 4. Let τn = {⋃
B∈FB | F ⊆ Bn

}
a topology on the set Q.

Proposition 2. The couple (Q, τn) is a topological space.

Proof. It is proved by lemma 1 and proposition 1.
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Once we have provided Q with a topology τn we can study some topologi-
cal properties of subsets of Q such as those that appear in A4. These topological
properties are sets associated with subsets of Q.

3. On the chemical meaning of topological properties

In a recent work [5–8] we showed that several intuitive chemical ideas can
be explained according to our methodology. For example, we found that the
mathematical boundary of metals and non-metals is the same set of chemical
elements, that is semimetals [5–8]. This result shows that the ancient concept of
semimetal as an element whose properties are not from metals nor from non-
metals has a mathematical explanation taking advantage of known properties
of chemical elements. On the other hand, we showed [8] that, taking advantage
of results from Molecular Quantum Similarity [12], the intuitive classification of
steroids according to chemical knowledge on structure and reactivity gives a dis-
joint set which indicates that this classification is correct. We apply the same
methodology to sets of aminoacids [13] and benzimidazoles [14] and we found [8]
some chemical species belonging to more than one set; something like happens
with semimetals regarding to metals and non-metals [5–8]. These results indicate
that there are some substances sharing their properties with substances of other
sets commonly considered different. Since these results arose from topological
properties of sets Q of chemical interest we consider necessary to give a chem-
ical explanation of these mathematical properties. Let us suppose the following
example:

Example 2. Let Q = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,

z} and suppose we have the following dendrogram to this set (figure 4). Now, if
we take n = 4, then we look for 4-maximal subtrees on the dendrogram. Thus,
we have the following basis for a topology:
B4 = {{a, b, d}, {f, m}, {c, g, l}, {e, n, p}, {t, i}, {u, h, o}, {v, w}, {x, y, q, z}, {s, j, k},
{r}}. Suppose we are interested in determined subset of Q called A, which is:
A = {a, b, c, d, e, f, g}. Then, we can start to calculate the topological properties
of this set A.

3.1. Closure of a subset

To calculate the closure of A (figure 5(a)) we need to know the elements of
Q which share their neighbourhoods with the elements of A, which are called
closure points. Since we have the neighbourhoods in the basis for a topology B4,
then we search all elements of Q in B4 that share their neighbourhoods with ele-
ments in A. Thus, as we define at the beginning every element of Q according to
its properties, then the meaning of closure is the set of all elements of Q which
are similar to the elements of the subset A under study (figure 5(b)).
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Figure 4. A particular dendrogram of 26 elements.

The above shown mathematically is:

A = {a, b, c, d, e, f, g, l, m, n, p} = A ∪ {l, m, n, p}.

3.2. Derived set of a subset

This set is the one that contains all elements such that if we remove every
one of them from their respective neighbourhoods, then these neighbourhoods
still remain related to the subset A under study. In other words, they are ele-
ments whose neighbourhoods are related to the subset studied A by more than
one element. Thus, the meaning of the derived set is the elements of Q similar
to the elements in A not only for their similarities but for the similarities of their
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Figure 5. Closure of A according to dendrogram of figure 4.

Figure 6. Derived set of A according to dendrogram of figure 4.

neighbours. If a neighbourhood has just one element similar to A, then this ele-
ment does not belong to the derived set of A since any other of its neighbours
is similar to the elements in A (figure 6).

We have in mathematical notation:

A′ = {a, b, c, d, g, l, m, n, p}.
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3.3. Boundary of a subset

We have in this set those elements of Q whose neighbourhoods have ele-
ments either of the A or of the complement of A. Thus, the chemical meaning of
this topological property is the elements whose properties are in between prop-
erties of the set of interest A and properties from the rest of the elements that
do not belong to A (figure 7). Something like happens with semimetals regarding
metals and semimetals, for instance.

Which in mathematical terms is:

b(A) = {c, e, f, g, n, p, m, l}.

3.4. Interior of a subset

This is the set of all elements of Q whose neighbourhoods are built up only
with elements in A. In chemical terms, we have in this set all elements whose
properties are closely related only to the set of interest A (figure 8). If we have
an element whose neighbourhood contains elements of A and besides elements
of Ac, then this element is not an interior point and it does not belong to the
interior set of A.

We have in mathematical terms:

Int(A) = {a, b, d}.

Figure 7. Boundary of A according to dendrogram of figure 4.
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Figure 8. Interior of A according to dendrogram of figure 4.

Figure 9. Exterior set of A according to dendrogram of figure 4.

3.5. Exterior of a subset

In this set we have all elements of Q such that their neighbourhoods do not
contain elements of A. In chemical terms this means, the set of all elements of
Q which are not similar to the elements in A (figure 9).
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Which in mathematical terms is:

Ext(A) = {h, i, j, k, o, q, r, s, t, u, v, w, x, y, z}.

4. Conclusions

Chemistry as a science of discrete objects (substances) can be studied by
means of discrete mathematics. In this work we developed a mathematical meth-
odology to study sets of chemical objects Q based on a classification of elements
in Q. This study starts with a complete binary tree which shows similarity
relationships among elements of the set Q. We showed a way to represent every
element of the tree as a code, and taking advantage of such codes we defined
neighbourhoods on the tree, which represent neighbourhoods on the space of
work where all elements of Q are defined. Such neighbourhoods are subsets of
Q and they are, besides, a partition of the tree since it is impossible that one
element of Q belongs to more than one branch on the tree. We proved that
this partition is a basis for a topology which in other words offers the possibil-
ity of providing the set Q of interest with a topology. Besides, we described a
procedure to calculate some topological properties of subsets of Q, such as clo-
sure, derived set, boundary, interior and exterior. Finally, we showed the chemi-
cal meaning of such properties in the case of each element of Q has been defined
according to its features or properties. In spite of having developed and applied
this methodology to chemical systems it is possible to apply the same procedure
to other systems such as biological, physical and other ones. The only require-
ment to apply this methodology is to have a set of discrete elements that can be
classified and shown as a tree, and there are many of them in the sciences.

Appendix

A1. Let X be a set non-empty and P a collection of subsets of X. P is called a
partition of X iff:

1. X = ⋃
B∈PB

2. If B1 and B2 ∈ P , then B1 ∩ B2 = ∅

A2. Let X be a non-empty set and τ a collection of subsets of X such that:

1. X ∈ τ

2. ∅ ∈ τ

3. If O1, . . . , On ∈ τ , then
⋂n

j=1 Oj ∈ τ

4. If α ∈ I , Oα ∈ τ , then
⋃

α∈IOα ∈ τ.
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Thus, τ is a topology, the couple (X, τ ) is called a topological space and the
elements of τ are called open sets.

A3. Let B be a collection of subsets of a non-empty set X, such that:

1. X = ⋃
B∈BB

2. If B1, B2 ∈ B, then B1 ∩ B2 is the union of elements of B, then B is
called a basis for the topology τ , where τ = {⋃

B∈FB | F ⊆ B
}
.

A4. Some topological properties are the following:

Let A ⊂ X and x ∈ X; x is said to be a closure point of A iff for every
O ∈ τ , such that x ∈ O, then O ∩ A �= ∅.

Let A ⊂ X; the closure of A is defined as: Ā = {
x ∈ X | x is closure point

of A}.
Let A ⊂ X and x ∈ X; it is said that x is an accumulation point of A iff for

every O ∈ τ , such that x ∈ O, then (O − {x}) ∩ A �= ∅.

Let A ⊂ X; the derived set of A is defined as: A′ = {
x ∈ X | x is accumu-

lation point of A
}
.

Let A ⊂ X and x ∈ X; is said that x is a boundary point of A iff for every
O ∈ τ , such that x ∈ O, then O ∩ A �= ∅ and O ∩ (X − A) �= ∅.

Let A ⊂ X; the boundary of A is defined as:

b (A) = {
x ∈ X | x is boundary point of A

}
.

Let A ⊂ X and x ∈ X; is said that x is an interior point of A iff for every
O ∈ τ , such that x ∈ O, then O ∩ (X − A) = ∅.

Let A ⊂ X; the interior of A is defined as:

Int(A) = {
x ∈ X | x is interior point of A

}
.

Let A ⊂ X and x ∈ X; is said that x is an exterior point of A iff for every
O ∈ τ , such that x ∈ O , then O ∩ A = ∅.

Let A ⊂ X; the exterior of A is defined as:

Int(A) = {
x ∈ X | x is exterior point of A

}
.
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